

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 2363–2365

Facile synthetic procedure for and electrochemical properties of hexa(2-thienyl)benzenes directed toward electroactive materials

Kenta Yoshida, Ichiro Morimoto, Koichi Mitsudo *, Hideo Tanaka *

Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan

> Received 16 January 2008; revised 12 February 2008; accepted 14 February 2008 Available online 19 February 2008

Abstract

In the presence of RhCl₃.3H₂O and *i*-Pr₂NEt, the cyclotrimerization of di(2-thienyl)acetylenes proceeded smoothly to afford hexa-(2-thienyl)benzenes. CV analysis of the hexa(2-thienyl)benzenes showed that they may be useful as electroactive materials. $© 2008 Elsevier Ltd. All rights reserved.$

Keywords: Rh/amine catalyst; Cyclotrimerization; Hexa(2-thienyl)benzene; Electroactive material

Over the past decade, extended π -conjugated com-pounds^{[1](#page-2-0)} have been studied for the use as materials in organic electroluminescent devices^{[2,3](#page-2-0)} and energy storage devices.[4,5](#page-2-0) Recently, two-dimensional aromatic cores, such as starburst hexaarylbenzene derivatives, have been synthesized, and their electrochemical and photochemical properties have been intensively studied.⁶ However, there have been only a few reports on the construction of hexaheteroarylbenzenes, such as hexa(2-thienyl)benzene derivatives, because they are difficult to synthesize. One way to construct hexathienylbenzene derivatives is Stille-type coupling of hexabromobenzene and thienylstannane, wherein the reaction should use a large amount of toxic stannanes.^{[7](#page-2-0)} Another way is transition metals-catalyzed cyclotrimeri-zation of dithienylacetylenes.^{[8](#page-2-0)} However, the trimerization of internal alkynes bearing heteroaryl groups is inhibited by the steric hindrance of products and the coordination of hetero-atoms to the central metal of the catalyst. For instance, Weber and co-workers reported that the reaction of di-2-thienylacetylene catalyzed by $RuH₂(CO)(PPh₃)₃$ gave a dimerized product, a benzothiophene derivative, as the major product $(63%)$ and hexa(2-thienyl)benzene was obtained in only 5% yield.^{8a} One approach to solving this problem is to introduce large substituents at the 5-position of thiophene moieties. Müllen and co-workers reported that $Co_2(CO)_8$ catalyzed the cyclization of di(5 $n-C_{12}H_{25}$ -thiophen-2-yl)acetylene to give hexathienylbenzene derivatives in 61% yield.^{8b} To our knowledge, there are no other reports on the efficient construction of hexathienylbenzene derivatives, although they should be novel, intriguing building blocks for not only electroactive materials but also photo-materials.

Recently, we found that the cyclotrimerization of internal alkynes proceeds efficiently in the presence of the $RhCl₃/i-Pr₂NEt$ catalyst.^{[9](#page-2-0)} These successful results prompted us to investigate the application of our methods to the synthesis of hexathienylbenzene derivatives. We report here the $RhCl₃/i-Pr₂NEt-catalyzed cyclotrimeri$ zation of di(2-thienyl)acetylenes, and the electrochemical properties of the resulting starburst-type benzene derivatives.

First, we performed the trimerization of di(2-thienyl)acetylene $1a$ [\(Scheme 1](#page-1-0)). In the presence of RhCl₃. $3H₂O$ (8 mol %) and *i*-Pr₂NEt (30 mol %), a solution of di(2-thienyl)acetylene (1a) in toluene was heated to reflux

Corresponding authors. Tel.: +81 86 251 8072; fax: +81 86 251 8079 (H.T.).

E-mail addresses: mitsudo@cc.okayama-u.ac.jp (K. Mitsudo), tanaka95@cc.okayama-u.ac.jp (H. Tanaka).

^{0040-4039/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.02.069

Scheme 1. $RhCl₃/i-Pr₂NEt-catalyzed cyclotrimerization of 1a.$

for 24 h to afford hexa(2-thienyl)benzene $(2a)^{10}$ $(2a)^{10}$ $(2a)^{10}$ in 14% yield and 44% of 1a was recovered. Although the dimerization did not take place, as we expected, the yield of 2a was unsatisfactory. The low reactivity might be attributable to the coordination of a thienyl group to the Rh center. To suppress this coordination, we next used *i*-PrOH as a solvent, and the yield of 2a increased to 49%.

To evaluate the catalytic activity of $RhCl₃/i-Pr₂NEt$, the cyclotrimerization of 1a was carried out using several catalysts (Table 1). Notably, the reaction using $RhCl₃·3H₂O$ in i-PrOH showed higher reactivity than with other catalysts, which are frequently used for the trimerization reaction of acetylene derivatives (entry 1). With toluene or 1,4-dioxane as a solvent, the yield of 2a decreased (entries 2 and 3). When the reaction was carried out using $RhCl(PPh₃)₃$ (Wilkinson's catalyst) in i-PrOH or toluene, 2a was obtained in respective yields of only 5% and 26% (entries 4 and 5). $[Rh(cod)_2][BF_4]$ (cationic catalyst) was ineffective, and starting material 1a was recovered (entries 6 and 7). When $Co₂(CO)₈$ was used in *i*-PrOH, the corresponding product was not obtained at all (entry 8). With 1,4-dioxane as a solvent, the corresponding product was obtained in 37% yield (entry 9). It is likely that $RhCl₃/i-Pr₂NEt$ catalyst might be electron-rich due to the coordination of i -Pr₂NEt, and could promote the efficient formation of metallacycle intermediates.

Table 1

Cyclotrimerization of 1a using several catalysts

Isolated yield.

Table 2

 $RhCl₃/i-Pr₂NEt-catalyzed cyclotrimerization of 1$

4 $1c$ Ac i -PrOH $2c$ 50

Isolated yield.

In a similar manner, we performed the cyclotrimerization of di(2-thienyl)acetylenes bearing substituents on the 5-position of their thienyl groups (Table 2). In toluene and i-PrOH, the cyclotrimerization of alkyne 1b, bearing a 5-methylthienyl group, gave the cycloadduct in respective yields of 63% and 50% (entries 1 and 2).^{[11](#page-2-0)} Notably, the reactivity of $1b$ in toluene was similar to that in i -PrOH, which is different from that of 1a, probably because the methyl group on α -position of thienyl group might reduce the coordination ability of the thienyl group. Indeed, in toluene, the cyclotrimerization of alkyne 1c, bearing a 5 acetylthienyl group which also can coordinate to the Rh center, gave cycloadduct $2c^{12}$ $2c^{12}$ $2c^{12}$ in only 4% yield and 1c was recovered in 20% yield (entry 3). With i-PrOH as a solvent, the yield of 2c dramatically increased to 50% (entry 4). These results suggest that $RhCl₃/i-Pr₂NEt$ catalyst might be more active in toluene than i-PrOH, but i-PrOH would suppress the coordination of a thienyl group to the Rh center.

Next, we subjected 2a to cyclic voltammetry (CV) measurements (Fig. 1). The growth of redox waves was observed in the potential range from 0.2 to 0.8 V during the sequential potential cycling $(\times 100)$, which suggested the formation of an electroactive film on the surface of the working electrode. In fact, a film was observed on the surface of the electrode. This suggests that the extension

Fig. 1. Cyclic voltammograms of $2a(10 \text{ mM})$ in TEABF₄/PC (1 M) solution. Scan rate: 100 mV s^{-1} .

Fig. 2. CVs of 2a-based film formed after CVs in [Fig. 1.](#page-1-0) Electrolyte: 2a (10 mM) in TEABF₄/PC (1 M) solution. Scan rate: 100 mV s^{-1} . Number of cycling: 5th cycle.

of π -conjugation of 2a might occur during the electrooxidation. Next, to investigate the main coupling position of a 2a-based film, we measured the CV of 2b bearing a methyl group at the 5-position of the thienyl groups. In CV, no significant increase in redox waves was observed, which suggests that electrooligomerization might occur at the 5-position of the thienyl groups. No film was observed on the working electrode during the electrooxidation of 2b.

The generated film was then subjected to CV analysis (Fig. 2). CV of the film showed two distinct redox responses: one in the potential range from 0.2 to 0.8 V (p-doping), and the other from -1.5 V to -2.8 V (n-doping), which are similar to those of frequently used polythiophene derivatives reported by Ferraris and co-workers.¹³ The maximum potential difference between redox waves of n- and p-doping was 3.5 V, which indicated a 3.5 eV band gap.

In summary, a simple method for constructing hexathienylbenzenes has been developed, and their fundamental electrochemical properties have been clarified. We found that hexa(2-thienyl)benzene $(2a)$ generated films by sequential potential cycling (CV). Though the exact structure of the film has not been clear yet, it should be a novel type polymer or oligomer containing thiophene linked at 2 and 5 positions. In addition, these 2a-based films may be a candidate for the electroactive materials in energy storage devices. Further studies on hexaheteroarylbenzenes are underway in our laboratory.

Acknowledgment

We thank the SC-NMR Laboratory of Okayama University for ${}^{1}H$ and ${}^{13}C$ NMR analyses.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at [doi:10.1016/j.tetlet.](http://dx.doi.org/10.1016/j.tetlet.2008.02.069) [2008.02.069.](http://dx.doi.org/10.1016/j.tetlet.2008.02.069)

References and notes

- 1. For a review, see: Baumgatner, T.; Réau, R. Chem. Rev. 2006, 106, 4681–4727.
- 2. For a review, see: Dini, D. Chem. Mater. 2005, 17, 1933–1945.
- 3. (a) Carpi, F.; Rossi, D. D. Opt. Laser Technol. 2006, 38, 292–305; (b) Assaka, A. M.; Rodrigues, P. C.; Oliveira, A. R. M.; Ding, L.; Hu, B.; Karasz, F. E.; Akcelrud, L. Polymer 2004, 45, 7071–7081.
- 4. For reviews, see: (a) Wohlgenanut, M.; Vardeny, Z. V. J. Phys.: Condens. Matter 2003, 15, R83-R107; (b) Abruña, H. D.; Matsumoto, F.; Cohen, J. L.; Jin, J.; Roychowdhury, C.; Prochaska, M.; van Dover, R. B.; DiSalvo, F. J.; Kiya, Y.; Henderson, J. C.; Hutchison, G. R. Bull. Chem. Soc. Jpn. 2007, 80, 1843–1855.
- 5. (a) Suematsu, S.; Mitsudo, K.; Katagiri, F.; Tanaka, H. Electrochemistry 2007, 75, 54–57; (b) Chen, T.; Wang, L.; Jiang, G.; Wang, W.; Wang, X. j.; Zhou, J.; Wang, J.; Chen, C.; Wang, W.; Gao, H. J. Electroanal. Chem. 2006, 586, 122–127; (c) Coppo, P.; Turner, M. L. J. Mater. Chem. 2005, 15, 1123–1133.
- 6. (a) Chebny, V. J.; Shukla, R.; Rathore, R. J. Phys. Chem. A 2006, 110, 13003–13006; (b) Rosokha, S. V.; Neretin, I. S.; Kochi, J. K. J. Am. Chem. Soc. 2006, 128, 9394–9407; (c) Mamane, V.; Gref, A.; Lefloch, F.; Riant, O. J. Organomet. Chem. 2001, 637, 84–88.
- 7. Wu, I.-Y.; Lin, J. T.; Tao, Y.-T.; Balasubramaniam, E. Adv. Mater. 2000, 12, 668–669.
- 8. (a) Lu, P.; Cai, G.; Li, J.; Weber, W. P. J. Heterocycl. Chem. 2002, 39, 91–92; (b) Geng, Y.; Fechtenkötter, A.; Müllen, K. J. Mater. Chem. 2001, 11, 1634–1641.
- 9. Yoshida, K.; Morimoto, I.; Mitsudo, K.; Tanaka, H. Chem. Lett. 2007, 36, 998–999.
- 10. General procedure for Rh/amine-catalyzed cyclotrimerization of alkyne 1: To a solution of $RhCl₃·3H₂O$ (11 mg, 0.04 mmol) in *i*-PrOH (3.0 mL) were added i -Pr₂NEt (26 μ L, 0.15 mmol) and di(2-thienyl)acetylene 1a (96 mg, 0.50 mmol). The mixture was stirred at reflux for 24 h. After being cooled to room temperature, the reaction mixture was filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ toluene 5:1) to afford hexa(2-thienyl)benzene $2a$ (47 mg, 49%) as yellow solids: $R_f = 0.27$ (hexane/toluene 5:1); ¹H NMR (600 MHz, CDCl₃) δ 6.59 (dd, $J = 3.6$, 1.2 Hz, 6H), 6.68 (dd, $J = 5.4$, 3.6 Hz, 6H), 7.08 (dd, $J = 5.4$, 1.2 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 125.8, 126.2, 129.1, 137.0, 140.7; IR (KBr) 3068, 2923, 2360, 1647, 1381, 694 cm⁻¹; Anal. Calcd for C₃₀H₁₈S₆: C, 63.12; H, 3.18. Found: C, 63.08; H, 3.36.
- 11. Hexakis(5-methyl-2-thienyl)benzene (2b): Yellow solids; $R_f = 0.23$ (hexane/toluene 5:1); ¹H NMR (600 MHz, CDCl₃) δ 6.33 (s, 12H), 2.30 (s, 18H); ¹³C NMR (150 MHz, CDCl₃) δ 15.2, 123.9, 128.7, 137.0, 138.8, 140.2; IR (KBr) 3068, 2912, 2855, 2357, 1747, 1442, 1219, 800 cm⁻¹; Anal. Calcd for C₃₆H₃₀S₆: C, 66.01; H, 4.62. Found: C, 66.09; H, 4.53.
- 12. Hexakis(5-acetyl-2-thienyl)benzene (2c): Colorless solids; $R_f = 0.07$ (hexane/EtOAc 3:1), ¹H NMR (600 MHz, CDCl₃) δ 7.27 (d, $J = 3.6$ Hz, 6H), 6.67 (d, $J = 3.6$ Hz, 6H), 2.43 (s, 18H); ¹³C NMR (150 MHz, CDCl3) d 26.7, 130.9, 131.8, 136.5, 145.8, 146.7, 190.7; IR (KBr) 3080, 1658, 1471, 1381, 1274 cm⁻¹.
- 13. (a) Neef, C. J.; Brotherston, I. D.; Ferraris, J. P. Chem. Mater. 1999, 11, 1957–1958; (b) Loveday, D. C.; Hmyene, M.; Ferraris, J. P. Synth. Met. 1997, 84, 245–246; (c) Guerrero, D. J.; Ren, X.; Ferraris, J. P. Chem. Mater. 1994, 6, 1437–1443.